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Abstract

We consider the following query answering problem: Given
a Boolean conjunctive query and a theory in the Horn loosely
guarded fragment, the aim is to determine whether the query
is entailed by the theory. In this paper, we present a resolu-
tion decision procedure for the loosely guarded fragment, and
use such a procedure to answer Boolean conjunctive queries
against the Horn loosely guarded fragment. The Horn loosely
guarded fragment subsumes classes of rules that are prevalent
in ontology-based query answering, such as HornALCHOI
and guarded existential rules. Additionally, we identify star
queries and cloud queries, which using our procedure, can be
answered against the loosely guarded fragment.

Introduction
Our motivation of considering query answering prob-
lem stems from ontology-based data access (OBDA) sys-
tems (Xiao et al. 2018), which have attracted much recent
attention in the knowledge representation and database com-
munities. In particular, since the Horn loosely guarded frag-
ment subsumes mainstream rules in OBDA systems, such
as Horn ALCHOI (Baader et al. 2017) and the guarded
existential rules (a.k.a. guarded TGDs) (Calı̀, Gottlob, and
Lukasiewicz 2012), our interest is the development of a
practical procedure for answering queries against the Horn
loosely guarded fragment (van Benthem 1997).

To retrieve information from OBDA systems, the main
querying mechanisms are (Boolean) conjunctive queries.
Given a Boolean conjunctive query (BCQ) q, a set Σ of rules
and a databaseD, checking whether Σ∪D |= q is equivalent
to checking whether Σ ∪ D ∪ ¬q |= ⊥, so that the problem
of answering BCQ can be reduced to deciding satisfiabil-
ity. Such BCQ answering problems can be recast as query
containment/entailment/evaluation problems in database re-
search (Baget et al. 2011), constraint satisfaction problems
and homomorphism mapping problems in general AI re-
search (Vardi 2000). Although finding answers for queries
is also an important problem, Boolean conjunctive query
answering is widely studied (Baget et al. 2011; Bárány,
Gottlob, and Otto 2010; Calı̀, Gottlob, and Kifer 2013;
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Calı̀, Gottlob, and Lukasiewicz 2012; Glimm et al. 2008;
Gottlob, Pieris, and Tendera 2013). In this paper, we partic-
ularly focus on an open problem, namely BCQ answering
for the Horn loosely guarded fragment.

The complexity of BCQ answering for the guarded
fragment is 2EXPTIME-complete (Bárány, Gottlob, and
Otto 2010), and satisfiability checking for the clique-
guarded negation fragment, which subsumes both BCQs
and the loosely guarded fragment, is also 2EXPTIME-
complete (Bárány, ten Cate, and Segoufin 2015). These
complexity results show that BCQ answering for the Horn
(loosely) guarded fragment is decidable, however, as yet
there is no practical (i.e., implementable) procedure.

Let us give a quick review of our settings and explain why
we start our investigation for query answering with decid-
ing the loosely guarded fragment (LGF). A loosely guarded
quantified formula (van Benthem 1997; Grädel 1999) has
the form ∀x(G1 ∧ . . . ∧ Gn → F ) where G1, . . . , Gn are
atoms that are called guards, F is a loosely guarded formula
where i) all free variables of F occur in G1 ∧ . . . ∧ Gn,
and ii) the variables in G1, . . . , Gn are either free, or they
co-occur with each other in a Gi among the G1, . . . , Gn.
The Horn fragment of LGF will be referred to Horn LGF.
A Boolean conjunctive query is a first-order formula of the
form q = ∃xϕ(x) where ϕ is a conjunction of atoms con-
taining only constants and variables. One can obtain a query
clause Q by simply negating a BCQ. Hence, Q is a negative
clause containing no compound terms.

To answer BCQs over Horn LGF, we begin with de-
ciding LGF, since it can be observed that i) some loosely
guarded formulae are naturally cyclic BCQs (Bernstein and
Chiu 1981) because a loosely guarded formula F allows
multiple guards, and all variables in the clausal form of
F (loosely guarded clauses) co-occur with each other in
one of the guards. E.g., the loosely guarded formula F =
∃xyz(A1xy ∧ A2yz ∧ A3xz) is a cyclic BCQ. In fact, it
shows that the conjunctive queries with the hyper-tree width
property are strongly connected to LGF (Gottlob, Leone,
and Scarcello 2003); ii) a loosely guarded formula allow
variables chaining multiple literals (chained variables), as
in F , which can cause term depth increase during reasoning
(see Example 1). We see that understanding the handling



of chained variables in LGF helps us handle chained vari-
ables in query clauses. Hence, in this paper, we first provide
a decision procedure to decide LGF. Subsequently we show
that such a procedure can be extended to answer BCQs over
Horn LGF and answer restricted BCQs over LGF.

Considering the only existing decision procedure for an-
swering BCQs over (Horn) LGF essentially aims at the
theoretical analysis (Bárány, ten Cate, and Segoufin 2015),
our focus is on devising a practical decision procedure, so
that one can implement our procedure as query engines.
We build our procedure using resolution in the framework
of (Bachmair and Ganzinger 2001), which is a standard
in the area of automated reasoning and provides basis for
most first-order logic reasoners such as Spass (Weidenbach
et al. 2009), Vampire (Riazanov and Voronkov 2001) and
E (Schulz 2013). References for using resolution with re-
finement as practical decision procedures are (Ganzinger
et al. 1998; Ganzinger and de Nivelle 1999; Hustadt and
Schmidt 1999; Hustadt 1999; Hustadt and Schmidt 1997;
Bachmair, Ganzinger, and Waldmann 1993).

In resolution-based reasoning, the main challenges to
avoid non-termination are: i) avoiding unlimited growth of
the number of literals in resolvents, and ii) avoiding unlim-
ited growth of term depth in resolvents. The former can be
tackled by using the property of loosely guarded clauses C:
Guards in C contain all variables of C, so that using our
inference system, the number of literals cannot increase in-
definitely in the resolvents. As for the latter, consider this
example:

Example 1. Q is a query clause and C1, C2 are loosely
guarded clauses:

Q = ¬A1(x, y) ∨ ¬A2(y, z),

C1 = A1(f(x1, y1), x1) ∨B1(g(x1, y1)) ∨ ¬G1(x1, y1),

C2 = A2(h(x2, y2), x2) ∨ ¬G2(x2, y2)

Performing resolution among Q,C1, C2 derives R =
B1(g(h(x2, y2)), y1) ∨ ¬G1(h(x2, y2), y1) ∨ ¬G2(x2, y2).
In R, g(h(x2, y2)) is deeper than all the terms in Q,C1 and
C2. This happens when a query clauseQ contains a chained
variable y where: i) y needs to be unified with a variable
x1 in C1 and a non-ground compound term h(x2, y2) in C2

at the same time and, ii) x1 occurs in a non-ground com-
pound term g(x1, y1) in C1. However, such term depth in-
crease can be avoided if we perform resolution on Q and
C1 first. We introduce the top variable technique in its cor-
responding section to show how the term depth increase in
R can be prevented.

Our resolution decision procedure for LGF is a variation
of procedures presented in (de Nivelle and de Rijke 2003)
and (Ganzinger and de Nivelle 1999). Like (Ganzinger and
de Nivelle 1999), but unlike (de Nivelle and de Rijke 2003),
which uses a non-liftable ordering, our procedure uses ad-
missible and liftable orderings with selection, and is con-
sistent with the resolution framework of (Bachmair and
Ganzinger 2001). Inspired by the ‘MAXVAR’ technique
in (de Nivelle and de Rijke 2003) and the partial hyper-
resolution technique from (Ganzinger and de Nivelle 1999),

we use the top variable technique to avoid term depth in-
crease. (Ganzinger and de Nivelle 1999) mainly focuses on
deciding the guarded fragment, and refers to a manuscript
version of (de Nivelle and de Rijke 2003) for technical de-
tails about using the ‘MAXVAR’ technique to decide LGF.
As for ‘MAXVAR’, unlike (de Nivelle and de Rijke 2003),
we use a unification-first approach to identify top variables
while (de Nivelle and de Rijke 2003) finds ‘MAXVAR’
by variable depth first, then applies a specific unification
algorithm. It turns out that our approach allows top vari-
ables (‘MAXVAR’) being easily identified since no spe-
cific permutation and unification algorithms are needed. Fur-
ther, we embed the top variable technique into the frame-
work of (Bachmair and Ganzinger 2001) as a selection func-
tion (top selection) with completeness proofs, so that, to-
gether by using liftable orderings, one immediately bene-
fits from being able to use the notions of redundancy in that
framework. Additionally, we generalise the pre-conditions
of ‘MAXVAR’, so that the top technique can be applied to a
larger class than LGF (any clauses that satisfy conditions of
query pair clauses), including queries, so that one can use the
top technique to query other fragments of first-order logic to
avoid variable depth growth as well. This makes our pro-
cedure applicable for the problems of BCQ answering for
Horn LGF, and the star/cloud query answering for LGF.

Without hurting the result of this paper, we discuss vari-
able depth, rather than term depth for the termination result.
This holds because a term depth can grow infinitely if and
only if a variable depth grows infinitely.

The contributions of this paper are:

• A variation of the resolution-based decision procedure for
LGF in (de Nivelle and de Rijke 2003), situated in the
framework of (Bachmair and Ganzinger 2001).

• By expanding the top variable technique to query pair
clauses, this procedure provides the basis for a practical
decision procedure for answering BCQs over Horn LGF.

• We identify star queries and cloud queries so that one can
use our procedure to answer these queries against LGF.

Preliminaries
Let C, F, P denote pairwise disjoint sets of constant sym-
bols, function symbols and predicate symbols, respectively.
The definition of (compound/ground) term, atom, literal,
clause, expression, argument, unifier, most general unifier
(mgu) and simultaneous mgu are defined as usual in auto-
mated reasoning (see e.g., (Bachmair and Ganzinger 2001)
for details). A literal L is a non-ground compound literal
if L contains at least one non-ground compound term. Let
x, A, C denote a sequence of variables, a sequence of atoms
and a set of clauses, respectively. Let var(t), var(C) and
var(An) denote sets of variables in a term t, a clause C and
a sequence of atoms An, respectively.

The variable depth of a term t, denoted as vdp(t), is de-
fined as follows: i) if t is ground, then vdp(t) = −1, and if t
is not ground, then ii) if t is a variable, then vdp(t) = 0, and
iii) if t is a non-ground compound term f(u1, . . . , un), then
vdp(t) = 1+max({vdp(ui) | 1 ≤ i ≤ n}). A term t is flat if



vdp(t) ≤ 0. A term t is simple if vdp(t) ≤ 1. A flat (simple)
atom, literal and clause is an atom, a literal and a clause such
that every term in it is flat (simple). We say a term t is a sim-
ple non-ground compound term if vdp(t) = 1. Assume C =
¬A1∨ . . .∨¬An∨D is a clause where ¬A1∨ . . .∨¬An are
flat literal. Then x ∈ var(A1, . . . , An) can be: i) a chained
variable: x occurs in two literals Ai, Aj among A1, . . . , An

such that var(Ai) 6⊆ var(Aj), var(Aj) 6⊆ var(Ai), and
x ∈ var(Ai)∩var(Aj), and ii) an isolated variable: x is not
chained. In Q of Example 1, y is a chained variable and x, z
are isolated variables. By the length of a clause, we mean the
number of literals that occur in a clause, and by the depth of
a clause, we mean the deepest variable depth of a clause.
In this paper, we assume the input clauses (formulae) are of
fixed-length and fixed-width.

A weakly covering term is a compound term t such that
for every non-ground, compound subterm s of t, it is the
case that var(s) = var(t) (Fermüller et al. 1993). A lit-
eral L is weakly covering if each argument of L is either a
ground term, a variable, or a weakly covering term t, such
that var(t) = var(L). A clauseC is weakly covering if each
term t in C is either a ground term, a variable, or a weakly
covering term such that var(t) = var(C). E.g., the clause
C1 = ¬A1(fxyza, x, y, ga) ∨ A2xyz is a weakly cover-
ing clause since the only non-ground compound term fxyza
satisfies that var(fxyza) = var(C1), however, the clause
C2 = ¬A1(gy, y, ga) ∨ A2(hxy) is not weakly covering
since var(gy) 6= var(C2). Here the notion of weakly cover-
ing literals in (Fermüller et al. 1993) is extended to weakly
covering clauses; reasons are given in the loosely guarded
clauses section.

Recall, the rule set Σ denotes a set of first-order formu-
lae and the database D denotes a set of ground atoms. A
Boolean conjunctive query is a first-order formula of the
form q = ∃xϕ(x) where ϕ is a conjunction of atoms con-
taining only constants and variables. We use the symbolQ to
denote the query clause ¬q, so that we can answer BCQ sat-
isfiability of Σ∪D |= q by checking whether Σ∪D∪Q |= ⊥.

The Loosely Guarded Fragment
Definition 1. The loosely guarded fragment (LGF) is a frag-
ment of first-order logic without equality and function sym-
bols, defined inductively as follows:

1. > and ⊥ are in LGF .
2. If A is an atom, then A is in LGF .
3. LGF is closed under Boolean combinations.
4. If F ∈ LGF and G1, . . ., Gn are atoms, then a formula
∀x(G1∧. . .∧Gn → F ) belongs toLGF if i) all free vari-
ables of F belong to var(G1, . . . , Gn), and ii) for each
variable x ∈ x and each variable y ∈ var(G1, . . . , Gn)
where x 6= y, x and y co-occur in aGi. The negative liter-
als ¬G1, . . . ,¬Gn are called the guards of this formula.

The first-order logic translation of a temporal logic for-
mula P until Q is a loosely guarded formula: ∃y(Rxy ∧
Qy ∧ ∀z((Rxz ∧ Rzy) → Pz))), but the transitivity for-
mula ∀xyz((Rxy ∧Ryz)→ Rxz) is not a loosely guarded
formula since x and z do not co-occur in a guard.

We use the loosely guarded formula F in Example 2 to
illustrate the clausal normal form transformation for LGF.

Example 2. ∃y(Rxy∧Qy∧∀z((Rxz∧Rzy)→ ∃xPxy))

The Resolution Calculus
In this section, we introduce the resolution calculus, which
gives us the main termination result of this paper. The in-
ference steps are restricted by an admissible ordering and
a selection function, so that the search space can be re-
duced when a reasoner computes inferences. For more tech-
nical details about rules used in this paper, we refer readers
to (Bachmair and Ganzinger 2001).

Let � be a strict ordering, called a precedence, on the
symbols in the C, F and P. An ordering � is liftable if for
all expressions E1 and E2 and all substitutions σ, E1 � E2

implies E1σ � E2σ. An ordering � on literals is admis-
sible, if i) it is well-founded and total on ground literals,
and liftable, ii) ¬A � A for all ground atoms A, and iii) if
B � A, then B � ¬A for all ground atoms A and B. A lit-
eral L is �-maximal with respect to a clause C if for any L′

in C, L′ 6� L, and L is strictly �-maximal with respect to a
clause C if for any L′ in C, L′ 6� L. A selection function S
selects a possibly empty set of occurrences of negative liter-
als in a clause C with no restriction imposed. Inferences are
only performed on eligible literals. A literal L is eligible in
a clause C if either nothing is selected in the selection func-
tion S and L is a �-maximal literal with respect to C, or L
is selected by S.

Inferences are computed using the following rules:
Deduction: N derives N,C if C is either a resolvent or a

factor of clauses in the set N .
Factors and resolvents are derived using:
Ordered factoring:C∨A1∨A2 derives (C∨A1)σ, where

i) σ is the mgu of A1 and A2, and ii) no literal is selected
in C, and iii) A1σ is �-maximal with respect to Cσ.

Ordered resolution with selection: ¬A1∨. . .∨¬An∨D,
B1 ∨ D1, . . . , Bn ∨ Dn derive (D1 ∨ . . . ∨ Dn ∨ D)σ
where i) either ¬A1 ∨ . . . ∨ ¬An are selected in D, or
n = 1, no literal is selected, and ¬A1σ is �-maximal with
respect to Dσ, and ii) no literal is selected in D1, . . . , Dn

and B1σ, . . . , Bnσ are strictly �-maximal with respect to
D1σ, . . . ,Dnσ, respectively, and iii) σ is a simultaneous
mgu such thatA1σ = B1σ, . . . , Anσ = Bnσ, and iv) ¬A1∨
. . .∨¬An∨D,B1∨D1, . . . , Bn∨Dn are pairwise variable-
disjoint.

In ordered factoring and ordered resolution, maximality
is computed using a-posteriori application of the mgu σ.
This means the maximal literal is determined after applica-
tion of σ, derived from the unification algorithm applied to
the premises of a rule. If the maximal literal is determined
before the application of σ, we call this a-priori application.

Redundancy is eliminated using:
Deletion: N,C derives N if C is a tautology, or N con-

tains a variant of C, or N contains a condensed form of C.
The ‘Deletion’ rule is the only rule used to eliminate re-

dundancy, and turns out to be sufficient for the termination
result. Since we employ an admissible ordering with a se-
lection function as resolution refinement in accordance with



the framework of (Bachmair and Ganzinger 2001), we can
also use more sophisticated simplification rules and redun-
dancy elimination of that framework, e.g, subsumption dele-
tion and forward/backward subsumption.

A ground clause C is redundant with respect to N if there
are ground instances C1σ, . . . , Cnσ of clauses in N such
that C1σ, . . . , Cnσ |= C and for each i, C � Ciσ. A non-
ground clauses C is redundant with respect to N if every
ground instance of C is redundant with respect to N . A set
of clauses N is saturated up to redundancy (with respect to
ordered resolution and selection) if any inference from non-
redundant premises in N is redundant in N (Bachmair and
Ganzinger 2001).

The Decision Procedure
Now we can discuss the resolution procedure for LGF.

Clausal Normal Form Translation LGF-Trans
The clausal normal form transformation we use is similar to
the one in (de Nivelle and de Rijke 2003) and (Ganzinger
and de Nivelle 1999), but i) free variables are assumed
to be existentially quantified since the focus is on satis-
fiability checking, and ii) prenex normal form and outer
Skolemisation (Nonnengart and Weidenbach 2001) are used.
Though outer Skolemisation may introduce Skolem func-
tions of higher arities than inner/standard Skolemisation,
outer Skolemisation turns out to be critical to guarantee that
output clauses have the weakly covering property.

We use LGF-Trans to denote the clausal normal form
transformation below. Using F in Example 2, one can ob-
tain a set of loosely guarded clauses via the following steps:

i) Add existential quantifiers to all free variables in F :

∃xy(Rxy ∧Qy ∧ ∀z((Rxz ∧Rzy)→ ∃xPxy)).

ii) Rewrite → and ↔ using conjunction, disjunction and
negation, and transform F into negation normal form, ob-
taining the formula Fnnf :

∃xy(Rxy ∧Qy ∧ ∀z(¬Rxz ∨ ¬Rzy ∨ ∃xPxy)).

iii) Apply optimised structural transformation to Fnnf , that
introduces fresh predicate symbols (Q1) for universally
quantified subformulae (∀z(¬Rxz ∨ ¬Rzy ∨ ∃Pxy)), ob-
taining the formula Fstr:
∃xy(Rxy ∧Qy ∧Q1xy) ∧
∀xy(¬Q1xy ∨ ∀z(¬Rxz ∨ ¬Rzy ∨ ∃xPxy)).

iv) Find ∃xy∀uvw∃x′((Rxy ∧ Qy ∧ Q1xy) ∧ (¬Q1uv ∨
¬Ruw∨¬Rwv∨Px′v)) as the prenex normal form of Fstr,
and apply outer Skolemisation: if ∀x is the subsequence of
all universal quantifiers of the ϕ-prefix of subformula ∃yϕ
of ϕ, then ϕ[y/f(x)] is the outer Skolemisation of ∃yϕ.
Skolem terms a, b, fxyz are introduced, obtaining Fsko:
Rab ∧ Qb ∧ Q1ab ∧
∀xyz(¬Q1xy ∨ ¬Rxz ∨ ¬Rzy ∨ P (fxyz, y))

v) Drop all universal quantifiers and transform Fsko into
conjunctive normal form, obtaining loosely guarded clauses:
Rab, Qb, Q1ab, ¬Q1xy ∨ ¬Rxz ∨ ¬Rzy ∨ P (fxyz, y)

Loosely Guarded Clauses
We now describe loosely guarded clauses and their proper-
ties.

Definition 2. A loosely guarded clause (LGC) C is a clause
satisfying the following conditions:

1. C is simple and weakly covering, and
2. if C is non-ground, then there is a set of negative literals
¬G1, . . . ,¬Gn in C that are flat. Then ¬G1, . . . ,¬Gn

are called the guards of C, such that each pair of vari-
ables in C co-occur in at least one of the guards.

We can immediately see that a ground clause is an LGC.

Proposition 1. Using LGF-Trans, every loosely guarded
formula can be transformed into a set of LGCs.

The class of LGCs strictly subsumes LGF since func-
tion symbols are allowed. If using an admissible ordering in
which function symbols have higher precedence than other
symbols, then non-ground compound terms in an LGC C
are always larger than variables in C due to the weakly
covering property. E.g., with a lexicographic path ordering
�lpo (?), considering an LGC C = ¬A1xy ∨ ¬A2yz ∨
¬A3xz ∨ D(fxyz) and an arbitrary substitution σ, D is
�lpo-maximal with respect toC ifDσ is�lpo-maximal with
respect to Cσ since var(D) = var(C). This shows that
when determining the maximal literal in an LGC, the result
of a-priori application follows the result of the a-posteriori
application. To avoid the overhead of pre-computating the
mgu using the a-posteriori application (Fermüller et al.
1993), we use the a-priori application. We show this result
in Lemma 1:

Lemma 1. Assume C is a weakly covering clause contain-
ing a non-ground compound literal L and σ is an arbitrary
substitution. Using any admissible ordering � with a prece-
dence that function symbols are larger than other symbols,
L is �-maximal with respect to C if Lσ is �-maximal with
respect to Cσ.

An obvious property of a weakly covering clause C is
that all non-ground terms and literals in C are also weakly
covering. Formally stated as:

Lemma 2. If a clause C is weakly covering, then for each
non-ground compound term t and each non-ground com-
pound literal L occur in C, var(t) = var(L) = var(C).

The Top Variable Technique
Before discussing the resolution calculus for LGCs, we in-
troduce the top variable technique, as a variation of the
‘MAXVAR’ technique in (de Nivelle and de Rijke 2003).
The top variable technique is a look-ahead approach to pre-
vent variable depth increase in the resolvents: Suppose we
have a set of clauses that can lead to variable depth increase
in the resolvent. Using the top variable technique, we first
identify clauses that lead to the potentially deepest terms,
and then perform resolution on those clauses first. Next we
perform inference on the rest of the clauses. In such a man-
ner of performing resolution, we show that no variable depth
increase occurs in the resolvents.



Definition 3 (Query Pair Clauses). Let An, Bn be a se-
quence of atoms A1, . . . , An and a sequence of weakly cov-
ering atoms B1, . . . , Bn, respectively. (An, Bn) is a query
pair if they satisfy these conditions:

1. An is flat and non-ground, and Bn is simple.
2. Each Bi ∈ Bn either is a non-ground compound literal

or is a ground literal.
3. var(An) ∩ var(Bn) = ∅, and B1, . . . , Bn are pairwise

variable disjoint.
4. There exists an mgu (simultaneous mgu if n > 1) σ such

that for each Ai ∈ An, Bi ∈ Bn, Aiσ = Biσ.

Let (An,Bn) be a query pair. Query pair clauses for a query
pair (An,Bn) is a set of clauses:C = ¬A1∨. . .∨¬An∨D,
C1 = B1∨D1, . . ., Cn = Bn∨Dn where D is a flat clause
and D1, . . . , Dn are simple clauses.

From now on, we also use mgu to denote the simultaneous
mgu. To find top variables in An in a query pair, one needs
to find the mgu between An and Bn to identify the variable
orderings over var(An).

Definition 4 (Variable Ordering). Let (An, Bn) be a query
pair and let an mgu σ satisfy Condition 4 in Definition 3.

By >v,=v we denote a variable ordering over var(An),
which is defined by: for x, y ∈ var(An), i) x >v y iff
vdp(xσ) > vdp(yσ), ii) x =v y iff vdp(xσ) = vdp(yσ).

Using the notion of variable orderings, we define top vari-
ables, and show the existence of top variables in query pairs:

Definition 5 (Top variable). Given a query pair (An, Bn),
a variable x ∈ var(An) is a top variable iff for each y ∈
var(An), x >v y or x =v y.

Proposition 2. Let (An, Bn) be a query pair. Then at least
one of the variables in An is a top variable.

The idea behind the top variable technique is finding the
potentially deepest term of query pair clauses. To realise it,
we first apply the unification algorithm, then make the lit-
erals in the main premise containing the potentially deep-
est terms eligible literals. In Example 1, the mgu σ =
{x/f(hx2y2, y1), y/hx2y2, z/x2, x1/hx2y2}, thus apply-
ing resolution among Q,C1, C2 derives B1(g(hx2y2), y1),
in which the first argument is deeper than all terms
in Q,C1, C2. Now we use top variables to find the deep-
est terms. First we find top variables in Q: since vdp(xσ) >
vdp(yσ) > vdp(zσ), x >v y >v z. Since x is the top
variable (potentially the deepest term), we make the lit-
eral A1 eligible since x only occurs in A1, then applying
resolution on clauses Q,C1, deriving the resolvent C3 =
¬A2(x1, z) ∨ B1(gx1y1) ∨ ¬G1(x1, y1). Though C3 is not
weakly covering, there is no variable depth increase in C3.

Let (An, Bn) be a query pair, and assume query pair
clauses C,C1, . . . , Cn such that C = ¬A1∨ . . .∨¬An∨D,
as the main premise, C1 = B1 ∨D1, . . ., Cn = Bn ∨Dn as
the side premises, where D is flat and D1, . . . , Dn are sim-
ple. Assume A1, . . . , At is a sequence of atoms containing
top variables and the respective counterparts areB1, . . . , Bt,
which occur in C1, . . . , Ct, respectively, and σ is the mgu

such that Aiσ = Biσ where 1 ≤ i ≤ t ≤ n. We de-
note Res as an application of resolution among the clauses
C,C1, . . . , Ct:

B1 ∨D1, . . . , Bt ∨Dt ¬A1 ∨ . . . ∨ ¬At ∨ . . . ∨ ¬An ∨D
(D1 ∨ . . . ∨Dt ∨ ¬At+1 ∨ . . . ∨ ¬An ∨D)σ

Given two expressions A(. . . , t, . . .) and B(. . . , u, . . .), we
say t matches u if the argument position of t in A is the
same as the argument position of u in B. We show how top
variables in var(An) match, the result is stated as:

Lemma 3. In an application of Res,

1. a top variable matches either a ground term or a non-
ground compound term, and

2. a non-ground compound term matches a top variable.

Based on the matching in Lemma 3, we now show prop-
erties of mgus in Res:

Lemma 4. In an application of Res, these conditions hold:

1. The mgu assigns to top variables either simple non-
ground compound terms or ground terms.

2. The mgu assigns to non-top variables in the main premise
either variables or ground terms.

3. The mgu assigns to variables in the side premises either
variables or ground terms.

Using Lemma 4, we give Theorem 1, which says that,
for query pair clauses, only resolving literals that contain
the potentially deepest terms does not lead to variable depth
growth in the resolvents.

Theorem 1. In an application of Res, no variable depth
growth occurs in the resolvents of a set of query pair clauses.

Resolution Refinement LGC-Refine
Now we formally describe the orderings and selection as re-
finement to decide LGF. One can use any admissible order-
ing that satisfies the conditions in LGC-Refine. Here a lexi-
cographic path ordering �lpo (?) is used.

Definition 6 (LGC-Refine). Let LGC-Refine denote the re-
finement: A lexicographic path ordering �lpo based on a
precedence f > a > p for f ∈ F, a ∈ C and p ∈ P, and a
selection function such that the following conditions hold:

1. If a clause contains negative non-ground compound liter-
als, then at least one of these literals is selected.

2. If a clause contains no negative non-ground compound
literal, but there are positive non-ground compound liter-
als, then the maximality principle with respect to �lpo is
applied to determine the eligible literals.

3. If a clause contains no non-ground compound literals, se-
lect all the negative literals containing top variables.

We use top selection to denote selection based on the
top variable technique. Condition 3 in LGC-Refine implies
that top selection is imposed not only to guards. E.g., al-
though ¬B(x) is not a guard in ¬A(x, y) ∨ ¬B(x), top se-
lection would select both A and B if x is a top variable.



The Resolution Calculus LGC-Res
Now we discuss how resolution with LGC-Refine performs
over LGCs. We use the notation LGC-Res to denote the
calculus consisting of the following: the ‘Deduction’ rule,
ordered factoring and ordered resolution with selection re-
fined by LGC-Refine, and the ‘Deletion’ rule. When apply-
ing LGC-Res, the ‘Deletion’ rule and the ‘Deduction’ rule
are used whenever they are applicable. As usual, we assume
the input clauses (after condensation and modulo variable
renaming) are a finite set of fixed LGCs.

First we discuss the ordered resolution rule. We use Res′
to denote the resolution rule when one of the premises sat-
isfy Condition 3 in LGC-Refine.

Let C = ¬A1 ∨ . . . ∨ ¬An ∨ D be a flat LGC, as the
main premise, and Ci = Bi ∨ Di be a set of LGCs, as
the side premises. Let At(n), Bt denote A1, . . . , At(n) and
B1, . . . , Bt where 1 ≤ t ≤ n, respectively. Using LGC-
Refine, Res′ is performed as:

B1 ∨D1, . . . , Bt ∨Dt ¬A1 ∨ . . . ∨ ¬At ∨ . . . ∨ ¬An ∨D
(D1 ∨ . . . ∨Dt ∨ ¬At+1 ∨ . . . ∨ ¬An ∨D)σ

where i)C is non-ground andD is positive, ii) eachAi ∈ At

contains at least one top variable and each Bi ∈ Bt is
strictly �lpo-maximal with respect to Ci, respectively, and
σ is the mgu such that Aiσ = Biσ where 1 ≤ i ≤ t, iii)
C, C1, . . ., Ct are pairwise variable disjoint.

Since the premises in Res′ (LGCs) satisfy conditions of
query pair clauses, we can inherit results of Res. The par-
ticularities in Res′ are: i) all premises are weakly covering
clauses rather than only literals are weakly covering, and ii)
each premise contains a set of guards.

First we show that using Res′, every resolvent is simple:

Corollary 1. In an application of Res′, the resolvents of a
set of LGCs are simple clauses.

To show the resolvents in Res′ are LGCs, we need to dis-
cuss some unique properties in Res′ comparing to Res:

Lemma 5. In an application of Res′, if we use notions from
Res′, and let x be a top variable inA1, . . . , As (s ≤ t). Then

1. var(A1, . . . , As) = var(C), and
2. var(xσ) = var(Cσ), and
3. var(xσ) = var(yσ) if x, y are distinct top variables.

Now we can show the resolvents in Res′ have are indeed
LGCs: they are weakly covering and contain a set of guards.

Lemma 6. In an application of Res′, the resolvents of a set
of LGCs are LGCs.

It remains to consider other possibilities in LGC-Res. In
particular, we discuss situations that are not covered by Res′
such that there is no premise satisfying Condition 3 in LGF-
Refine: the negative premise satisfies Condition 1 in LGF-
Refine or is ground. This is the case when the ordered reso-
lution with selection is naturally reduced to a binary case.

Lemma 7. In an application of LGC-Res, the factors of
LGCs are LGCs, and the resolvents of LGCs are LGCs.

Now we can show the main result of this section:

Theorem 2. Given a set of LGCs, using LGC-Res, all in-
ferred clauses are LGCs.

So far we have shown that using LGC-Res, the resolvents
of LGCs are LGCs. Since an LGC is a simple clause, there is
no variable depth increase during the inference. We still need
to consider that using LGC-Res, the length of the resolvents
cannot be infinitely long:
Lemma 8. In an application of LGC-Res, the number of
variables in derived clauses is no more than the number of
variables of one of the premises of these derived clauses.

Refutational Completeness and Termination
This section we give the refutational completeness and ter-
mination results of applications of LGC-Res over LGCs. For
refutational completeness result, we particularly show that
the top selection used in LGC-Refine is compatible within
the framework of (Bachmair and Ganzinger 2001).
Theorem 3 (Refutational Completeness). Let N be a set
of clauses that are saturated up to redundancy under LGC-
Res, then N is unsatisfiable iff N contains the empty clause.

Let LGF-Res denote the combination of the clausal trans-
formation LGF-Trans and the resolution calculus LGC-Res
with refinement LGC-Refine. Now we give the first main re-
sult of this paper:
Theorem 4. LGF-Res decides LGF.

Querying Horn LGF and LGF
In this section, we aim to check whether Σ ∪ D ∪ Q |= ⊥
where Σ are formulae in (Horn) LGF, D is a set of ground
atoms and Q is a query clause. Because Σ and D can be
transformed into (Horn) LGCs using LGF-Trans, the aim
now is to check whether C ∪ Q |= ⊥ where C is a set of
(Horn) LGCs and Q is a query clause. In particular, we as-
sume Q is a fixed query clause. We show that when either Q
is restricted to star/cloud queries, or Σ is restricted to Horn
LGF, our procedure guarantees termination.

Since a query clause Q contains no non-ground com-
pound terms, Q satisfies Condition 3 in LGC-Refine, thus
no particular new refinement for Q is needed. Hence we still
can use LGC-Refine as refinement for inference rules. How-
ever, LGC-Res does not contain a rule to compute resolvents
of a query clause and a set of LGCs. Using LGC-Refine, a
query clause Q and a set of LGCs C1, . . . , Cn satisfy con-
ditions of query pair clauses, thus we apply Res to compute
resolvents of Q and C1, . . . , Cn. We use Query-Res to de-
note LGF-Res and Res using refinement LGC-Refine. Since
no positive factoring can be applied to query clauses, we
only discuss how resolution is performed on query clauses.

According to Theorem 1, the following result holds:
Corollary 2. In the application of Res, there is no variable
depth growth in the resolvents of a query clause and a set of
LGCs, thus the resolvents are simple clauses.

Querying Horn LGF
It follows from Theorem 2 that using Query-Res, the resol-
vents of a set of LGCs are LGCs. We now discuss the resol-
vent of a query clause and a set of LGCs. Corollary 2 shows



that a resolvent R of a query clause and a set of LGCs is
a simple clause. However, this simple clause R can be nei-
ther an LGC nor a query clause. In Example 1, one can ob-
tain C3 = ¬A2(x1, z) ∨ B1(gx1y1) ∨ ¬G1(x1, y1) using
Res with LGC-Refine. Although C3 is simple, C3 is neither
an LGC (not weakly covering), nor a query clause (not flat).

We observe that by disallowing multiple positive non-
ground compound literals in LGCs, using Res, the resolvent
R of a query clause and Horn LGCs is a negative clause con-
taining no non-ground compound term, thus R is a query
clause. If we change C1 in Example 1 to a Horn LGC C ′

1 =
A1(fx1y1, x1) ∨ ¬G1(x1, y1), then by applying Res with
refinement LGC-Refine, since x is a top variable, resolution
between Q,C ′

1 derives C ′
3 = ¬A2(x1, z) ∨ ¬G1(x1, y1),

which is a query clause. According to LGC-Refine, fur-
ther inference between C2 and C ′

3 requires another posi-
tive premise that contains a positive literal G1 that is either
ground or contains non-ground compound terms. Hence, no
inference is performed between C2 and C ′

3.
We show that Query-Res can decide C ∪Q |= ⊥ where C

are formulae in Horn LGF and Q is a query clause. Notice
that ground atoms D are immediately in Horn LGF. A Horn
loosely guarded clause (Horn LGC) is an LGC that contains
at most one positive literal. The Horn loosely guarded frag-
ment (Horn LGF) is a subset of LGF that can be transformed
into a set of Horn LGCs using LGF-Trans.

Using Res, when query pair clauses are query clauses and
a set of Horn LGCs, the resolvents are query clauses:

Lemma 9. In an application of Res, the resolvents of Horn
LGCs and a query clause are query clauses.

It turns out the proof of Lemma 9 does not require the
premises to be guarded. Thus we can generalise Lemma 9 to
a result such that the resolvents of a query clause and a set
of simple, weakly covering Horn clauses are query clauses.

Since a Horn LGC contains at most one positive literal,
ordered factoring cannot be applied. Now we show other
possibilities of applying resolution in Query-Res:

Lemma 10. Using Query-Res, the resolvents of Horn LGCs
are Horn LGCs.

So far we showed that query clauses and Horn LGCs are
closed under the inference system Query-Res, and the vari-
able depth of derived clauses does not increase. Now we
consider the length of derived clauses:

Lemma 11. In an application of Query-Res, given a finite
set of fixed Horn LGCs and fixed query clauses, all derived
clauses are fixed query clauses.

Now we give the second main result of this paper:

Theorem 5. Query-Res decides the problem of the BCQ an-
swering for Horn LGF.

Restricted Queries for LGF
In this section, we answer loosely guarded queries, star
queries and cloud queries over LGF. Theorem 4 implies that
if a query clause Q is expressible in LGCs, then using LGF-
Res, one can immediately answer Q over LGF. E.g., one
can answer a loosely guarded query ∃xyz(Postgrad(x) ∧

citedBy(x, y) ∧ citedBy(y, z) ∧ citedBy(z, x)) over LGF
using LGF-Res. This result is formally stated as:

Corollary 3. LGF-Res decides the loosely guarded query
answering problem for LGF.

Another observation from Example 1 is: The top vari-
able x does not occur with all other variables in Q. If y,
which occurs with all other variables in Q, is a top vari-
able, then using Res, the resolvent among Q,C1, C2 is
an LGC. E.g., if we change C1 to C ′

1 = A1(x1, fx1y1) ∨
B1(gx1y1)∨¬G1(x1, y1), to make y a top variable, then us-
ing Res, the resolvent of Q,C ′

1, C2 is an LGC B1(gx1y1) ∨
¬G1(x1, y1)∨¬G2(x1, y1). This observation motivates our
definition of star queries and cloud queries, which both guar-
antee the co-occurrence property between top variables and
all other variables in the query clause.

Before discussing star/could queries, we first give the
definition of partners of a variable. The partner of a vari-
able x in a query Q par(x,Q) is a set of variables that
co-occur with x in an atom of Q, and par(x,Q) is inter-
preted as par(x1, Q) ∪ . . . ∪ par(xn, Q) where xi is in an
atom of Q. E.g., Let a query Q = ∃xyz(A1xy ∧ A2yz).
Then par(x,Q) = {y} and par(x, z,Q) = par(x,Q) ∪
par(z,Q) = {y}.
Definition 7 (Star Query). A BCQ is a star query Q if Q
contains a top variable x such that par(x,Q) = var(Q).

The notion of star query strictly extends that of loosely
guarded query, since only one top variable need to oc-
cur with all other variables. E.g., a query clause Q =
∃xyz(A1xy ∧ A2yz) is not a loosely guarded query since
x and z do not co-occur in any literal in Q, but if y is a top
variable, Q is a star query.

Definition 8 (Cloud Query). A BCQQ is a cloud query if Q
satisfies these conditions:

1. Q contains chained variables V that are top variables.
2. Each pair in V co-occur in an atom of Q.
3. par(V, Q) = var(Q).

The notion of cloud query is a further extension of that of
a star query since a top variable does not need to occur with
all other variables. An example of a cloud, but not star query
is Q = ∃xyzuv(A1xy ∧ A2yz ∧ A3zuv ∧ A4v) if y, z are
top variables. Q is a cloud query because that V = {y, z},
y, z co-occur in A2, and par(V, Q) = var(Q).

Unlike loosely guarded queries, star queries and cloud
queries vary depending on whether the top variables co-
occur with all other variables.

Now we show that the resolvents of a set of LGCs and a
star/cloud query are LGCs:

Lemma 12. Using Res with refinement LGC-Refine, the re-
solvents of a set of LGCs and a star/cloud query are LGCs.

Following the same idea of Lemma 8, we can show that
the resolvents of a set of LGCs and a star/cloud query cannot
have more variables than one of their side premises. Now we
can state the third result of this paper:

Theorem 6. Query-Res decides the problem of the loosely
guarded query and star/cloud query answering for LGF.



Conclusion and Future Work
In this paper, we have presented, as far as we know, the
first practical decision procedures for answering BCQs over
Horn LGF. Inspired by the ‘MAXVAR’ notion from (de Niv-
elle and de Rijke 2003), we used the top variable technique
to handle chained variables in query clauses. Based on this
top variable technique, we showed the method LGF-Res de-
cides LGF, the method Query-Res answers BCQs over Horn
LGF, and it answers loosely guarded queries, star queries
and cloud queries over LGF. This shows that Query-Res pro-
vides essentials for the implementation of query answering
over guard-related fragments as an extension for existing
first-order logic reasoners.

Using Query-Res, an issue of answering BCQs against the
whole of LGF is that: If the top variable is an isolated vari-
able in a query clause Q, then the resolvents of Q and a set
of LGCs is neither a query clause nor an LGC (Example 1).
Our next step is extending Query-Res so that we can use it
to answer BCQs against LGF, for which as yet there is no
practical procedure.
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