
Towards Polynomial Time Forgetting and Instance Query
Rewriting in Ontology Languages

Sen Zheng Renate A.Schmidt
University of Manchester, Manchester, UK

{sen.zheng,renate.schmidt}@manchester.ac.uk
Abstract: Ontologies can present a conceptual view of a relational database. This ontology-based data access
(OBDA) can allow a client to query enterprise ontologies directly. The problem of rewriting and optimisation
of such queries against ontologies is insufficiently studied in database research. In this paper, we discuss using
uniform interpolation to forget some symbols, especially role symbols, to rewrite instance queries against
ontologies. In particular, when there is no nesting in an ontology, our forgetting algorithm is guaranteed to
terminate in a polynomial time. We introduce Ackermann’s lemma-based algorithm to preserve semantic
equivalence during query rewriting. We further extend our approach to linear Datalog± rules (existential rules
with equality) and also the guarded fragment of first-order logic. These two languages can be regarded as
generalisations of description logics, which provide bases of ontology languages.

1 Introduction

An ontology is a form of graph-based database manage-
ment system, and it allows automated processing and rea-
soning. In the ontology-based data access (OBDA), an on-
tology is used as a conceptual layer of relational databases,
allowing clients to manage and query data more directly.
Such querying is called the ontology-based query answer-
ing (OBQA). It is now an insufficiently studied problem in
database research.

In OBDA, an instance query q is answered against a
database D with an ontology Σ such that D ∪ Σ |= q. An
instance query is a unary atomic query such as A(x). In this
setting, Description Logics (DLs) are used as an ontology
language. However, the best known decidable fragments of
DLs are 2EXPTIME-complete, which makes querying very
hard. Most OBQA systems are based on a lightweight DLs,
such as DL-Lite [5] and EL [2] families. These DLs are de-
signed to guarantee decidability and polynomial time data
complexity for the query answering. DLs only allow unary
and binary relations, Calı̀ [3] argues that the Datalog± lan-
guage, which have multi-ary and unary relations, is a strong
tool for query answering. In Datalog±, guarded Datalog±

and its subclass linear Datalog± show good decidability
results [4]. Having lightweight DLs and linear Datalog±

ontologies, researchers focus on rewriting and optimising
queries to make querying more effective. In [5], authors
proposed the perfect reformulation algorithm to do rewrit-
ing. [7] gives a polynomial rewriting approach for linear
Datalog±.

Since DLs ALCOI (ALC with nominals and inverse
roles) can be seen as a fragment of first-order logic, its
translation in first-order logic is generalised as the Guarded
Fragment (GF) [1]. The guards in GF correspond to role
symbols in DLs. Moreover, GF is also a superclass of the
linear Datalog± that follows GF format.

In this paper, we use a forgetting algorithm to rewrite
queries while preserving semantic equivalence, and we are

interested in a new different class from previous ones, GF
without nested formulas, to forget guard symbols. In partic-
ular, when guards do not occur in non-guard positions, the
data complexity and combined complexity of our algorithm
is tractable.

2 Forgetting and GF

Forgetting is a non-standard reasoning procedure to remove
the forgetting signatures from original formulas, and keep
the remaining formulas semantically equivalent to the origi-
nal formulas. In other words, the result formulas are equiva-
lent to the original formulas up to the forgetting signatures.
This work is motivated by [11] and [10] that extends the
forgetting algorithm to first-order logic.

GF is robustly decidable [8], but it does not have the
Craig Interpolation Property, thus the Uniform Interpola-
tion property (a.k.a the forgetting property) [9]. That means
forgetting some predicates in GF does not guarantee that
the result still belongs to GF. Recent research use the model
theory to show that the forgetting signature can only be non-
guard predicates and it fails to forget guards.

In this paper, we show that by introducing ∃-guard,
guards can be forgotten without losing semantic equiva-
lence.

3 Forgetting Guards in GF

We define a guarded formula without any nested formulas
as a flat guarded formula. In particular, for flat guarded for-
mulas with equality and constants, we concern forgetting
guards when there is no guard occurring at a non-guard po-
sition in other formulas. The input is a set of formulas N
combined by formulas mentioned above, and the forgetting
signatures are a set of guards G in N . Our algorithm has 4
major steps:

1. Normalisation In this step, every input formula in N
is formalised as a formula without any free variables.

34



We add universal quantifications to free variables in
N , and then transform these formulas into their nega-
tion normal forms N1.

2. Structural Transformation In this step, each formula
in N1 is transformed into its clausal form. We intro-
duce new predicates, also known as definers, to do
structural transformation. During structural transfor-
mation, each formula in N1 is transformed differently
depending on the root of its formula tree. For some
formulas in N1 that contain constants and equalities,
we use the term abstraction rule and the equality elim-
ination rule as follows.

N ∪ {C(x̄, ā)}
N ∪ {C(x̄, ȳ)... ∨ yn ∕≈ an}

where ȳ is disjoint with x̄.

C ∨ x ∕≈ a

C ∨Qi(x),¬Qi(a)

where Qi is a fresh predicate.

We also introduce some special definers ≈-guard eqG
and ∃-guard eG. An eqG is used to define equali-
ties such as x ∕≈ a, and an eG is used as a guard
for existential quantified unguarded clause such as
∃xy(A(x) ∧ B(y)). An eG is used to transform it
into ∃xy(eG(x, y) ∧ A(x) ∧ B(y)). After structural
transformation, the clausal form of formulas in N1 is
ground or is positive conjunction of atoms or contains
a negative literal that has all variables in this clause.
We call the set of result clauses N2.

3. Forgetting Guards In this step, the set of guard sym-
bols G in the forgetting signatures are eliminated. We
use Ackermann’s Lemma to eliminate guards one at a
time. The set of result formulas are called N3.

4. Eliminating Definers In this step, the aim is to elim-
inate definer symbols introduced in step 2. Acker-
mann’s Lemma is also used to eliminate these defin-
ers.

Given flat guarded formulas, possibly with equality and
constants, and assuming there is no guard occurring at a
non-guard position in other formulas. We can claim that:

Claim 3.1 This forgetting algorithm is sound, terminating
and forgetting complete.

Claim 3.2 The complexity of our algorithm is polynomial.

4 Conclusion and Ongoing Work

In this paper, we show that we can forget guards in flat GF
in a polynomial time without losing semantic equivalence.
Because we consider instance queries in this paper, this ap-
proach can be used as a query rewriting algorithm to forget
guards in Datalog± that follows GF format, and to forget
roles in ALCOI. In future, we will focus on forgetting
a non-guard predicates in GF and apply our algorithm to
other possible applications like abduction reasoning [6].

References

[1] Hajnal Andréka, István Németi, and Johan van Ben-
them. Modal languages and bounded fragments of
predicate logic. Journal of Philosophical Logic,
27(3):217–274, 1998.

[2] Franz Baader. Terminological cycles in a description
logic with existential restrictions. In IJCAI, volume 3,
pages 325–330, 2003.

[3] Andrea Calı̀. Ontology querying: datalog strikes
back. In Reasoning Web International Summer
School, pages 64–67. Springer, 2017.

[4] Andrea Calı, Georg Gottlob, and Michael Kifer. Tam-
ing the infinite chase: Query answering under expres-
sive relational constraints. J. Artif. Intell. Res, 48:115–
174, 2013.

[5] Diego Calvanese, Giuseppe De Giacomo, Domenico
Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in
description logics: The dl-lite family. Journal of Au-
tomated reasoning, 39(3):385–429, 2007.

[6] Diego Calvanese, Magdalena Ortiz, Mantas Simkus,
and Giorgio Stefanoni. Reasoning about explanations
for negative query answers in dl-lite. Journal of Arti-
ficial Intelligence Research, 48:635–669, 2013.

[7] Georg Gottlob, Marco Manna, and Andreas Pieris.
Polynomial rewritings for linear existential rules. In
IJCAI, pages 2992–2998, 2015.

[8] Erich Grädel. Why are modal logics so robustly de-
cidable? In Bulletin EATCS. Citeseer, 1999.

[9] Eva Hoogland and Maarten Marx. Interpolation and
definability in guarded fragments. Studia Logica,
70(3):373–409, 2002.

[10] Patrick Koopmann. Practical uniform interpolation
for expressive description logics. 2015.

[11] Yizheng Zhao and Renate A Schmidt. Role forget-
ting for alcoqh (δ)-ontologies using an ackermann-
based approach. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 1354–1361. AAAI Press, 2017.

35


