Towards Polynomial-time Forgetting and Instance Query Rewriting in Ontology Languages

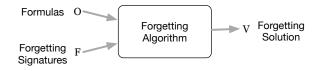
Sen Zheng Renate A. Schmidt

School of Computer Science, The University of Manchester

April 12, 2018

Overview

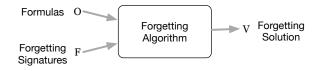
Aim:


- polynomial-time forgetting of guards for the guarded fragment (GF)
- polynomial-time instance query rewriting of role symbols in description logics \mathcal{ALCOI}

< ∃ >

Overview

Aim:

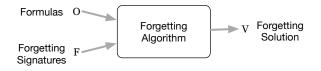

- polynomial-time forgetting of guards for the guarded fragment (GF)
- polynomial-time instance query rewriting of role symbols in description logics \mathcal{ALCOI}
- What is forgetting?
- The guarded fragment?
- Instance query rewriting for ALCOI?

Goal:

Derive \mathcal{V} such that:

- $sig(\mathcal{V}) \subseteq sig(\mathcal{O}) \setminus \mathcal{F}$
- $\bullet \ \mathcal{O} \mbox{ and } \mathcal{V} \mbox{ are equivalent up to the interpretation of } \mathcal{F}$

Goal:


Derive \mathcal{V} such that:

- $sig(\mathcal{V}) \subseteq sig(\mathcal{O}) \setminus \mathcal{F}$
- $\bullet \ \mathcal{O}$ and \mathcal{V} are equivalent up to the interpretation of \mathcal{F}

Example:

$\mathcal{O}: \operatorname{Postdoc}(x) \to \operatorname{Researcher}(x) \quad \mathcal{F} = \{\operatorname{Postdoc}\}$ Postdoc(Ann)

- 4 ∃ ▶

Goal:

Derive \mathcal{V} such that:

- $sig(\mathcal{V}) \subseteq sig(\mathcal{O}) \setminus \mathcal{F}$
- $\bullet \ \mathcal{O}$ and \mathcal{V} are equivalent up to the interpretation of \mathcal{F}

Example:

$\mathcal{O}: \operatorname{Postdoc}(x) \to \operatorname{Researcher}(x) \quad \mathcal{F} = \{\operatorname{Postdoc}\}$ Postdoc(Ann)

V: Researcher(Ann)

< 3 >

Applications

- Uniform interpolation.
- Second-order quantifier elimination.
- Query rewriting in ontology-based data access.
- Ontology debugging.
- Abduction reasoning.

Tools:

- SCAN, first-order logic, resolution
- LETHE, description logic, resolution
- FAME, description logic, Ackermann approach

the Guarded Fragment

The guarded fragment (GF)

- A decidable fragment of first-order logic (FOL).
- FOL translations of description logic ALCI.

Definition:

 $\perp | A | \phi \lor \phi | \neg \phi | \forall x(G \to \phi)$ where free variables of ϕ occur in the guard atom G.

the Guarded Fragment

The guarded fragment (GF)

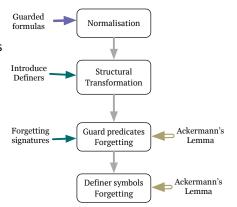
- A decidable fragment of first-order logic (FOL).
- FOL translations of description logic \mathcal{ALCI} .

Definition:

 $\perp | A | \phi \lor \phi | \neg \phi | \forall x(G \to \phi)$ where free variables of ϕ occur in the guard atom G.

Input: A set of non-nested guarded formulas with equality and constants.

Purpose:

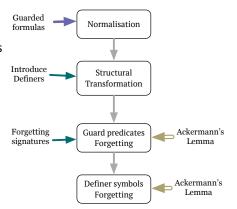

- The output guarded formulas are semantically equivalent to the input formulas up to \mathcal{F} .
- The complexity is polynomial.

- 4 同 6 4 日 6 4 日 6

Ackermann's Lemma-based forgetting approach

There are 4 major steps:

- Add quantifiers for free variables and negation normal form transformation.
- Introduce definers to flatten formulas.
- Incrementally forget guard predicates in *F*.
- Incrementally forget definers.


Ackermann's Lemma-based forgetting approach

There are 4 major steps:

- Add quantifiers for free variables and negation normal form transformation.
- Introduce definers to flatten formulas.
- Incrementally forget guard predicates in *F*.
- Incrementally forget definers.

Conclusions:

- Polynomial-time complexity.
- The first approach to forget the guard predicates.

Instance query: A query that contains only one atom (a role).

Image: A math and A math and

Instance query: A query that contains only one atom (a role).

Knowledge base:

Researcher ⊑ ∃worksFor worksFor(Alice, WebCure) Researcher(Cook) Who works for any project? $q(x) = \exists y \text{ worksFor}(x, y)$

Instance query: A query that contains only one atom (a role).

Knowledge base: Researcher ⊑ ∃worksFor worksFor(Alice, WebCure) Researcher(Cook) Who works for any project? $q(x) = \exists y \text{ worksFor}(x, y)$

 $\mathcal{F} = \{\text{worksFor}\}.$ **ANS:** an answer predicate tracing the variable x in q(x).

- **KB**: $\neg Researcher(x) \lor \exists y \ worksFor(x, y) = 1$
- **q:** \neg worksFor $(x, y) \lor ANS(x) = 2$
- AL on 1, 2: $\neg Researcher(x) \lor ANS(x)$ 3

・ 何 ト ・ ヨ ト ・ ヨ ト

Instance query: A query that contains only one atom (a role).

Knowledge base: Researcher ⊑ ∃worksFor worksFor(Alice, WebCure) Researcher(Cook) Who works for any project? $q(x) = \exists y \text{ worksFor}(x, y)$

 $\mathcal{F} = \{\text{worksFor}\}.$ **ANS:** an answer predicate tracing the variable x in q(x).

- **KB:** $\neg Researcher(x) \lor \exists y \ worksFor(x, y) = 1$
- **q:** \neg worksFor $(x, y) \lor ANS(x) = 2$
- AL on 1, 2: $\neg Researcher(x) \lor ANS(x)$ 3

 $q_1 = \exists y \text{ worksFor}(x, y), q_2 = Researcher(x)$

(本部)と 本語 と 本語を

Instance query: A query that contains only one atom (a role).

Knowledge base: Researcher ⊑ ∃worksFor worksFor(Alice, WebCure) Researcher(Cook) Who works for any project? $q(x) = \exists y \text{ worksFor}(x, y)$

 $\mathcal{F} = \{\text{worksFor}\}.$ **ANS:** an answer predicate tracing the variable x in q(x).

- **KB**: $\neg Researcher(x) \lor \exists y \ worksFor(x, y) = 1$
- **q:** \neg worksFor $(x, y) \lor ANS(x) = 2$
- AL on 1, 2: $\neg Researcher(x) \lor ANS(x)$ 3

$$q_1 = \exists y \text{ worksFor}(x, y), q_2 = Researcher(x)$$

Answer set: {Alice, Cook}

< 回 > < 三 > < 三 >

Conclusions and ongoing work

- It is a polynomial-time method to forget guard predicates in non-nested guarded formulas.
- This approach is a partial instance query rewriting method for *ALCOI*.
- The current work focus on expressing the \mathcal{ALCOI} forgetting results into queries.

Thank You!

MANCHESTER 9/9

イロト イヨト イヨト イヨト