

Querying clique guarded existential rules Renate A. Schmidt Sen Zheng

The University of Manchester

Department of Computer Science, University of Manchester

Ontology-based Data Access

Figure: OBDA Architecture

Industrial applications:

- Optique
- ► Stardog

Decidable rules are:

- Description logics
- Decidable existential rules

Querying mechanisms are:

- Conjunctive query
- Boolean conjunctive query

Querying via Resolution

Aim: Give a Boolean conjunctive query q, a set of clique guarded existential rules Σ and a set of ground facts \mathcal{D} , check whether $\Sigma \cup \mathcal{D} \models q$ (via resolution).

Clique guarded existential rules (CGER):

- Decidable
- Extends (loosely) guarded existential rules
- ► No practical approach to query CGER yet
- ► No specific practical approach to decide CGER yet

Boolean conjunctive query (BCQ):

- Returns an yes/no
- Query containment/equivalence/evaluation

Decision Procedures

Clausal Transformation

Query-Trans:

Simply negate the BCQ. $\forall xyz(A(x,y) \land B(y,z))$ is transformed as $\neg A(x, y) \lor \neg B(y, z)$

CGER-Trans:

Prenex normal form

Outer Skolemisation

 $\forall xy(A(x,y) \rightarrow \exists wB(x,w))$ is transformed as $\neg A(x, y) \lor B(x, fxy)$.

Clause Defining:

Query clause:

- ► Flat
- ► Negative

Horn clique guarded clause (HCGC):

- ► Simple
- Weakly covering
- ► There exists a clique in guards
- All non-guard variables are in the clique

Resolution Refinement:

A lexicographic path ordering with a precedence f > a > p and selection:

- 1. If a clause is flat, select all the negative literals containing top variables.
- 2. If a clause contains negative non-ground compound literals, select one of them.
- 3. Else, use the orderings to find the maximal literals.

Top Selection Examples

Example 1

A set of HCGCs: $C = \neg A_1(x, y) \lor \neg A_2(y, z, v) \lor \neg A_3(z, x) \lor D(z)$ $C_1 = A_1(fx, fx) \lor \neg G_1(x)$ $C_3 = A_3(gx, x) \lor \neg G_3(x)$ $C_2 = A_2(x, qx, x) \vee \neg G_2(x)$

No top selection

The mgu: $\{x \mapsto fx, y \mapsto fx, z \mapsto gfx, v \mapsto x\}$ The hyper-resolvent is: $D(gfx) \lor \neg G_1(x) \lor \neg G_2(fx) \lor \neg G_3(fx)$ Contains a deeper term. Not a query clause/HCGC.

Top selection Top variable: z, Select A_2 and A_3 , The hyper-resolvent is: $\neg A_1(x,x) \lor \neg G_2(x) \lor \neg G_3(x) \lor D(gx)$ It is a HCGC. (Use a proper precedence.)

Example 2

A query clause and a set of HCGCs: $Q = \neg A_1(x, y) \lor \neg A_2(y, z)$ $C_1 = A_1(fxy, x) \lor \neg G_1(x, y)$ $C_2 = A_2(qxy, x) \lor \neg G_2(x, y)$

No top selection The mgu:

 $\{x \mapsto f(gxy, y'), y \mapsto gxy, z \mapsto x\}$ The hyper-resolvent is: $\neg G_1(qxy, y') \lor \neg G_2(x, y)$ Not weakly covering. Not a query clause/HCGC.

Top selection Top variable: x, Select A_1 , The resolvent is: $\neg A_2(x,z) \lor \neg G_1(x,y)$ It is a query clause. (Requires another premise.)