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Ontology Based Data Access

Rules

Graph-based
Database

Relational
Database

RDF

User

Query Answer

Mapping

OBDA

Ontology-based data access (OBDA)
systems

integrate schemas of heterogeneous
databases

present rules in decidable logics, e.g.,
description logics, guarded logics

mainly concern answering queries
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Context

Answering Boolean conjunctive query (BCQ)

Returns an yes/no to a query

Query containment/equivalence/evaluation

Widely studied in literatures, e.g., [2, 3, 4, 5, 7, 8]

Clique guarded existential rules (CGER):

Decidable

Subsume Horn (loosely) guarded fragment and Horn-ALCHOI
No resolution-based approach deciding/querying CGER yet

Aim:
Give a BCQ q, a set of CGERs Σ and a set of ground facts D, check
whether Σ ∪D |= q.
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BCQ and CGER

BCQ: q = ∃Xφ(X )
φ is a conjunction of atoms containing only variables and constants.

∃xyz A(x , y) ∧ B(y , z)

CGER: ∀X∀Yφ(X ,Y ) → ∃Zψ(X ,Z )

φ(X ,Y ) and ψ(X ,Z ) are conjunctions of atoms

X is not an empty set in ∃Zψ(X ,Z )

each pair of free variables of ∃Zψ(X ,Z ) co-occur in at least one
atom of φ(X ,Y )

∀xyzv1v2v3(A1(x , y , v1) ∧ A2(x , z , v2) ∧ A3(y , z , v3) → ∃wB(x , y , z ,w))
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Decision Procedure

Clausal
Transformation

Resolution Steps
CGER

BCQ

Outer Skolemisation

Horn clique 
guarded clauses

Query clauses

Resolution Refinement

Satisfiable

Not Satisfiable

Figure: Procedure Overview

Three major steps to decide Σ ∪D ∪ ¬q:
Clausal transformation

Clause definement

Resolution refinement
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Clausal Transformation

1. Negating BCQ to obtain query clauses:

∃xyz A(x , y) ∧ B(y , z) becomes ¬A(x , y) ∨ ¬B(y , z)

2. Using prenex normal form and outer Skolemisation to obtain Horn
clique guarded clause (HCGC):

∀xyzv1v2v3(A1(x , y , v1) ∧ A2(x , z , v2) ∧ A3(y , z , v3) → ∃wB(x , y , z ,w))

becomes

¬A1(x , y , v1) ∨ ¬A2(x , z , v2) ∨ ¬A3(y , z , v3) ∨ B(x , y , z , fxyzv1v2v3) where
f is a Skolem function.
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Query Clause and HCGC

Query clause: A negative clause containing only variables and constants.
¬A(x , y) ∨ ¬B(y , z , a)

Horn clique guarded clause C :

condensed Horn clause

simple
→ no nested non-ground compound terms

weakly covering
→ var(t) = var(C ) for any non-ground compound term t

there is a clique in some negative flat literals (aka guards)
→ In C1, a clique {x , y , z} co-occur with each other in one of guards

variables in C all occur in guards G
→ var(G) = var(C )

C1 = ¬A1(x , y , v1) ∨ ¬A2(x , z , v2) ∨ ¬A3(y , z , v3) ∨ B(x , y , z , fxyzv1v2v3)
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Loss of Weakly Covering Property

Example 1:

Given a set of HCGC C1,C2 and a query clause Q:

Q = ¬A1(x , y) ∨ ¬A2(y , z)
C1 = A1(fx1y1, x1) ∨ ¬G1(x1, y1)
C2 = A2(gx2y2, x2) ∨ ¬G2(x2, y2)

Perform resolution on Q,C1,C2:

the mgu is {x '→ f (gx2y2, y1), x1, y '→ gx2y2, z '→ x2},
the resolvent is ¬G1(g(x2y2), y1) ∨ ¬G2(x2, y2).

Neither a query clause nor a HCGC.
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Term Depth Increase

Example 2:

Given a set of HCGC:

C = ¬A1(x , y , v1) ∨ ¬A2(y , z) ∨ ¬A3(z , x) ∨ D(x , z)
C1 = A1(fx1, x1, x1) ∨ ¬G1(x1)
C2 = A2(gx2, gx2) ∨ ¬G2(x2)
C3 = A3(x3, fx3) ∨ ¬G3(x3)

Perform resolution on C ,C1,C2,C3:

the mgu is {x '→ fgx2, y , z , x1, x3, v1 '→ gx2},
the resolvent is ¬G1(gx2) ∨ ¬G2(x2) ∨ ¬G3(gx2) ∨ D(fgx2, gx2).
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Top Variable Technique

Inspired by ’MAXVAR’ [6], the top variable technique is to find the
potentially deepest term to resolve upon.

Using Example 2:

1

Order variables in the main premise by variable depth of their
substitution.
→ {x '→ fgx2, y '→ gx2, z '→ gx2}, hence x >v y =v z .

2

Find top variables. → x

3

Select literals that contain top variables. → A1 and A3

4

Apply resolution on selected literal.
→ Applying resolution on C ,C1,C3 derives
C4 = ¬G1(x1) ∨ ¬G3(x1) ∨ ¬A2(x1, x1) ∨ D(fx1, x1)

Further application of resolution between C2 and C4 can be avoided using
orderings.
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Resolution Refinement Query-Refine

Within framework of [1], we use admissible orderings and (top) selection
to guarantee termination.

function symbols > constant symbols > predicate symbols

select at least one negative non-ground compound literals

¬G (gx) ∨¬A(x) ∨ B(gx)

Else find the maximal literal
¬A(x) ∨ B(gx)∗

Else select all the negative literals containing top variables

¬A(x , y , v1) ∨¬B(y , z)∨ ¬C (z , x) if x is a top variable.

S.Zheng, R.A Schmidt ARW 2019 11 / 13



Resolution Refinement Query-Refine

Within framework of [1], we use admissible orderings and (top) selection
to guarantee termination.

function symbols > constant symbols > predicate symbols

select at least one negative non-ground compound literals

¬G (gx) ∨¬A(x) ∨ B(gx)

Else find the maximal literal
¬A(x) ∨ B(gx)∗

Else select all the negative literals containing top variables

¬A(x , y , v1) ∨¬B(y , z)∨ ¬C (z , x) if x is a top variable.

S.Zheng, R.A Schmidt ARW 2019 11 / 13



Resolution Refinement Query-Refine

Within framework of [1], we use admissible orderings and (top) selection
to guarantee termination.

function symbols > constant symbols > predicate symbols

select at least one negative non-ground compound literals

¬G (gx) ∨¬A(x) ∨ B(gx)

Else find the maximal literal
¬A(x) ∨ B(gx)∗

Else select all the negative literals containing top variables

¬A(x , y , v1) ∨¬B(y , z)∨ ¬C (z , x) if x is a top variable.

S.Zheng, R.A Schmidt ARW 2019 11 / 13



Resolution Refinement Query-Refine

Within framework of [1], we use admissible orderings and (top) selection
to guarantee termination.

function symbols > constant symbols > predicate symbols

select at least one negative non-ground compound literals

¬G (gx) ∨¬A(x) ∨ B(gx)

Else find the maximal literal
¬A(x) ∨ B(gx)∗

Else select all the negative literals containing top variables

¬A(x , y , v1) ∨¬B(y , z)∨ ¬C (z , x) if x is a top variable.

S.Zheng, R.A Schmidt ARW 2019 11 / 13



Claims

Query-Res denotes the combination of:

condensation

tautology elimination

ordered factoring defined by Query-Refine

ordered resolution with selection defined by Query-Refine

Claim 1

Query-Res decides HCGCs and query clauses.

Claim 2

The combination of the previous clausal transformations and Query-Res
decide the BCQ answering for CGERs.
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Conclusion and Ongoing Work

We developed a decision procedure for answering Boolean conjunctive
queries against clique guarded existential rules, based on ordered resolution
and a sophisticated form of selection.

The procedure is sound and complete.

Next step:

Support our claims with formal proofs.

Using TPTP as a benchmark to run experiments.

TPTP contains 92 HCGC problems, among which 66 are
non-propositional.

Among those 66 problems, 65 are Horn guarded clause, 1 is Horn loosely
guarded but not guarded. No problem is HGGC but not a Horn loosely
guarded clause.
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