Querying the Guarded Fragment via Resolution

Sen Zheng, Renate A. Schmidt
University of Manchester, UK

June 6, 2022

Aim: BCQ answering for GF

Aim: BCQ answering for GF

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \bar{y}(G(\bar{x}) \rightarrow \varphi)$ and $\exists \bar{y}(G(\bar{x}) \wedge \varphi)$ if free variables of φ are among \bar{x}

Aim: BCQ answering for GF

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \bar{y}(G(\bar{x}) \rightarrow \varphi)$ and $\exists \bar{y}(G(\bar{x}) \wedge \varphi)$ if free variables of φ are among \bar{x}

Boolean conjunctive query (BCQ)

- $\exists \bar{x} \varphi(\bar{x})$: a conjunction of atoms containing only constants and variables as arguments
- $\exists x_{1 \ldots 6}\left(A\left(x_{1}, x_{2}\right) \wedge B\left(x_{1}, x_{3}\right) \wedge C\left(x_{3}, x_{4}, x_{5}\right) \wedge D\left(x_{5}, x_{6}\right)\right)$

Aim: BCQ answering for GF

The guarded fragment (GF)

- Equality-free and no function symbol
- Subsumes many description logics and modal logics
- $\forall \bar{y}(G(\bar{x}) \rightarrow \varphi)$ and $\exists \bar{y}(G(\bar{x}) \wedge \varphi)$ if free variables of φ are among \bar{x}

Boolean conjunctive query (BCQ)

- $\exists \bar{x} \varphi(\bar{x})$: a conjunction of atoms containing only constants and variables as arguments
- $\exists x_{1 \ldots 6}\left(A\left(x_{1}, x_{2}\right) \wedge B\left(x_{1}, x_{3}\right) \wedge C\left(x_{3}, x_{4}, x_{5}\right) \wedge D\left(x_{5}, x_{6}\right)\right)$

BCQ answering for GF
$\Sigma \cup \mathcal{D} \vDash q$, given Σ in $G F$, ground atoms \mathcal{D}, a BCQ q.

Motivation

BCQ answering for GF

- Query containment/evaluation/entailment
- Constraint-satisfaction/homomorphism problem
- Ontology-based data access (OBDA) systems

Motivation

BCQ answering for GF

- Query containment/evaluation/entailment
- Constraint-satisfaction/homomorphism problem
- Ontology-based data access (OBDA) systems

Problems of interest

Some known results:

- Resolution decides GF [?, ?]
- Retrieving answers over GF is undecidable [?] $(\exists y(A x y \wedge B y z)$ derives $\neg A x y \vee \neg B y z \vee q x z)$
- Querying GF is 2EXPtime-complete [Vince Bárány and Georg Gottlob and Martin Otto(2010)]

Problems of interest

Some known results:

- Resolution decides GF [?, ?]
- Retrieving answers over GF is undecidable [?] $(\exists y(A x y \wedge B y z)$ derives $\neg A x y \vee \neg B y z \vee q x z)$
- Querying GF is 2EXPtime-complete [Vince Bárány and Georg Gottlob and Martin Otto(2010)]

Problems of insterest:

- No practical procedure exists for querying GF
- No practical procedure for BCQ rewriting for GF

Querying GF via resolution

Aim: $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \perp \quad(Q$ means $\neg q)$

Querying GF via resolution

Aim: $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \perp \quad(Q$ means $\neg q)$

Querying GF via resolution

Aim: $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \perp \quad(Q$ means $\neg q)$

Guarded Clause:

- $D_{1}(f x y, x) \vee \neg G x y, \quad \neg D_{2}(f x, x) \vee \neg G x y, \quad \neg D_{3}(f x y, x) \vee \neg G x$
- Covering and guardedness

Querying GF via resolution

Aim: $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup Q \models \perp \quad(Q$ means $\neg q)$

Guarded Clause:

- $D_{1}(f x y, x) \vee \neg G x y, \quad \neg D_{2}(f x, x) \vee \neg G x y, \quad \neg D_{3}(f x y, x) \vee \neg G x$
- Covering and guardedness

Query Clause:

- $\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)$
- Negative and compound-term-free

Handling query clauses

Acyclic query clause:

$$
Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
$$

Cyclic query clause:
$Q_{c}=\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee \neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)$

Handling query clauses

The separation rule:

$$
\text { Sep: } \frac{N \cup\{C \vee D\}}{N \cup\left\{\neg d_{s}(\bar{x}) \vee C, d_{s}(\bar{x}) \vee D\right\}}
$$

(1) $\operatorname{var}(C) \nsubseteq \operatorname{var}(D)$ and $\operatorname{var}(D) \nsubseteq \operatorname{var}(C)$
(2) $\bar{x}=\operatorname{var}(C) \cap \operatorname{var}(D)$
(3) d_{s} is a fresh predicate symbol, as a definer.

- Replacement rule!

Handling acyclic query clauses
 $$
Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
$$

Handling acyclic query clauses

$$
Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
$$

Chained variables: x_{1}, x_{3}, x_{5} Isolated variables: x_{2}, x_{4}, x_{6}

Handling acyclic query clauses

$$
Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
$$

Chained variables: x_{1}, x_{3}, x_{5} Isolated variables: x_{2}, x_{4}, x_{6}

Handling acyclic query clauses

$Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)$

Chained variables: x_{1}, x_{3}, x_{5} Isolated variables: x_{2}, x_{4}, x_{6}

Sep:

- Remove isolated variables
- Replace isolated-variable literals by definers

Handling acyclic query clauses

$$
Q_{a}=\neg A\left(x_{1}, x_{2}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
$$

Chained variables: x_{1}, x_{3}, x_{5} Isolated variables: x_{2}, x_{4}, x_{6} Sep:

- Remove isolated variables
- Replace isolated-variable literals by definers
$Q_{a} \vdash{ }_{\text {Sep }}$
- $\neg A\left(x_{1}, x_{2}\right) \vee d_{1}\left(x_{1}\right)$
- $\neg d_{1}\left(x_{1}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee$
$\neg C\left(x_{3}, x_{4}, x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)$

Handling acyclic query clauses

Handling acyclic query clauses

$$
\begin{aligned}
& \text { 1. } \neg A\left(x_{1}, x_{2}\right) \vee d_{1}\left(x_{1}\right) \quad \text { 2. } \neg d_{1}\left(x_{1}\right) \vee \neg B\left(x_{1}, x_{3}\right) \vee d_{2}\left(x_{3}\right) \\
& \text { 3. } \neg d_{2}\left(x_{3}\right) \vee \neg C\left(x_{3}, x_{4}, x_{5}\right) \vee d_{3}\left(x_{5}\right) \quad \text { 4. } \neg d_{3}\left(x_{5}\right) \vee \neg D\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Handling cyclic query clauses

$$
Q_{c}=\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee \neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)
$$

Handling cyclic query clauses

$$
Q_{c}=\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee \neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)
$$

Chained variable: $x_{1}, x_{3}, x_{5}, x_{7}$ Isolated variable: $x_{2}, x_{4}, x_{6}, x_{8}$

Handling cyclic query clauses

$$
Q_{c}=\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee \neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)
$$

Chained variable: $x_{1}, x_{3}, x_{5}, x_{7}$ Isolated variable: $x_{2}, x_{4}, x_{6}, x_{8}$

Handling cyclic query clauses

$$
Q_{c}=\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee \neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)
$$

Chained variable: $x_{1}, x_{3}, x_{5}, x_{7}$ Isolated variable: $x_{2}, x_{4}, x_{6}, x_{8}$
$Q_{c} \vdash_{S e p}:$

- $\neg A\left(x_{1}, x_{2}, x_{3}\right) \vee d_{1}\left(x_{1}, x_{3}\right)$
- $\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg B\left(x_{3}, x_{4}, x_{5}\right) \vee$ $\neg C\left(x_{5}, x_{6}, x_{7}\right) \vee \neg D\left(x_{7}, x_{8}, x_{1}\right)$
- $\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg d_{2}\left(x_{3}, x_{5}\right) \vee$ $\neg d_{3}\left(x_{5}, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x_{1}\right)$

Sep

Handling chained-only query clause

$$
Q=\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg d_{2}\left(x_{3}, x_{5}\right) \vee \neg d_{3}\left(x_{5}, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x_{1}\right)
$$

- Only chained variables

Handling chained-only query clause

$Q=\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg d_{2}\left(x_{3}, x_{5}\right) \vee \neg d_{3}\left(x_{5}, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x_{1}\right)$

- Only chained variables

TRes + T-Trans

TRes:

- Macro inference rule on Q
- Inspired by 'MAXVAR' [?]

T-Trans:

- Structural transformation on TRes resolvents
- Obtain guarded clauses and a query clause Q^{\prime}
- Q^{\prime} is smaller than Q

Handling chained-only query clause

 How to perform inferences to obtain clauses in our class?- $Q=\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg d_{2}\left(x_{3}, x_{5}\right) \vee \neg d_{3}\left(x_{5}, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x_{1}\right)$
- $C_{1}=d_{1}(x, g x y) \vee \neg G_{1} x y$
$C_{2}=d_{2}(g x y, x) \vee P(h x y) \vee \neg G_{2} x y$
- $C_{3}=d_{3}(f x, x) \vee \neg G_{3} x$
$C_{4}=d_{4}(x, f x) \vee \neg G_{4} x$

Handling chained-only query clause

How to perform inferences to obtain clauses in our class?

- $Q=\neg d_{1}\left(x_{1}, x_{3}\right) \vee \neg d_{2}\left(x_{3}, x_{5}\right) \vee \neg d_{3}\left(x_{5}, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x_{1}\right)$
- $C_{1}=d_{1}(x, g x y) \vee \neg G_{1} x y$
$C_{2}=d_{2}(g x y, x) \vee P(h x y) \vee \neg G_{2} x y$
- $C_{3}=d_{3}(f x, x) \vee \neg G_{3} x$
$C_{4}=d_{4}(x, f x) \vee \neg G_{4} x$

TRes:

- Compute the mgu σ^{\prime} among $Q, C_{1 \ldots 4}$: $\left\{x_{1} / f x, x_{3} / g(f x, y), x_{5} / f x, x_{7} / x\right\}$
- Perform a 'partial inference' on top variable $\left(x_{3}\right)$ literals in Q
- Resolve Q, C_{1} and C_{2} using the mgu $\sigma:\left\{x_{1} / x, x_{3} / g x y, x_{5} / x\right\}$
- Compute 'partial conclusion'

$$
R=\neg G_{1} x y \vee \neg G_{2} x y \vee P(h x y) \vee \neg d_{3}\left(x, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x\right)
$$

- Makes 'maximal selection resolution' redundant

Handling chained-only query clause

$$
R=\neg G_{1} x y \vee \neg G_{2} x y \vee P(h x y) \vee \neg d_{3}\left(x, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x\right)
$$

- Neither a guarded clause nor a query clause.

Handling chained-only query clause

$$
R=\neg G_{1} x y \vee \neg G_{2} x y \vee P(h x y) \vee \neg d_{3}\left(x, x_{7}\right) \vee \neg d_{4}\left(x_{T}, x\right)
$$

- Neither a guarded clause nor a query clause.

Handling chained-only query clause

 $R=\neg G_{1} x y \vee \neg G_{2} x y \vee P(h x y) \vee \neg d_{3}\left(x, x_{7}\right) \vee \neg d_{4}\left(x_{7}, x\right)$- Neither a guarded clause nor a query clause.

T-Trans represents R by

- Guarded clause $\neg G_{1} x y \vee$

$$
\neg G_{2} x y \vee P(h x y) \vee d_{t}(x, y)
$$

- Query clause Q^{\prime} :

$$
\begin{aligned}
& \neg d_{t}(x, y) \vee \neg d_{3}\left(x, x_{7}\right) \vee \\
& \neg d_{4}\left(x_{7}, x\right)
\end{aligned}
$$

Q^{\prime} :

- Non-cyclic
- Breaks at least one cycle
- Smaller than Q

BCQ rewriting procedure \mathbf{Q}-Rewrite

- Goal-oriented
- No grounding needed
- Saturate $\{\Sigma \cup \neg q\}$ to obtain Σ_{q} before considering \mathcal{D}
- $\mathcal{D} \cup \Sigma \models q$ reduces to $\mathcal{D} \models \Sigma_{q}$ Tractable! (in data complexity)

Conclusions and future work

- First practical BCQ answering/rewriting procedures over GF
- Sep is useful in decoupling non-cyclic chains
- But be careful with infinitely many definers
- 'Partial inference' in of the form TRes is insteresting

Conclusions and future work

- First practical BCQ answering/rewriting procedures over GF
- Sep is useful in decoupling non-cyclic chains
- But be careful with infinitely many definers
- 'Partial inference' in of the form TRes is insteresting
- Querying the loosely guarded fragment?
- Querying the guarded negation fragment (\approx) ?
- Deciding fluted logic?
- Implementations and empirical evaluations

Thanks!

